Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.048
Filtrar
1.
J Environ Manage ; 357: 120783, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579475

RESUMO

The rapid development of the economy and society is causing an increase in the amount of municipal solid waste (MSW) produced by people's daily lives. With the strong support of the Chinese government, incineration power generation has steadily become the primary method of treating MSW, accounting for 79.86%. However, burning produces a significant amount of municipal solid waste incineration fly ash (MSWI-FA), which contains heavy metals, soluble chlorine salts, and dioxins. China's MSWI-FA yield increased by 8.23% annually to 7.80 million tons in 2022. Besides, the eastern region, especially the southeastern coastal region, has the highest yield of MSWI-FA. There are certain similarities in the chemical characteristics of MSWI-FA samples from Northeast, North, East, and South China. Zn and CaO have the largest amounts of metals and oxides, respectively. The Cl content is about 20 wt%. This study provides an overview of the techniques used in the thermal treatment method, solidification and stabilization, and separation and extraction of MSWI-FA and compares their benefits and drawbacks. In addition, the industrial applications and standard requirements of landfill treatment and resource utilization of MSWI-FA in China are analyzed. It is discovered that China's resource utilization of MSWI-FA is insufficient through the study on the fly ash disposal procedures at a few MSW incineration facilities located in the economically developed Guangdong Province and the traditional industrial city of Tianjin. Finally, the prospects for the disposal of MSWI-FA were discussed.


Assuntos
Metais Pesados , Eliminação de Resíduos , Humanos , Cinza de Carvão/química , Resíduos Sólidos/análise , Material Particulado/análise , Carbono/análise , Incineração , Metais Pesados/análise , China
2.
Molecules ; 29(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611743

RESUMO

Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron-carbon-nitrogen aerogel. The atomic-scale Ag and Ni are uniformly dispersed on the catalyst surface and form Ag/Ni-C/N bonds with C and N, which were conducive to the catalytic oxidation of benzene at room temperature. Further catalytic reaction mechanisms indicate that benzene reacted with ·OH to produce R·, which reacted with O2 to regenerate ·OH. Under the strong oxidation of ·OH, benzene was oxidized to form alcohols, carboxylic acids, and eventually CO2 and H2O. This study not only significantly reduces the energy consumption of VOC catalytic oxidation, but also improves the safety of VOC treatment, providing new ideas for the low energy consumption and green development of VOC treatment.

3.
BMC Ophthalmol ; 24(1): 158, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600456

RESUMO

BACKGROUND: This study aimed to compare the visual outcomes of the first operated eyes with those of the second operated eyes following small-incision lenticule extraction (SMILE). METHODS: A total of 202 patients (404 eyes) underwent SMILE using the tear film mark centration method for myopia and myopic astigmatism correction. Baseline characteristics, objective optical quality, decentered displacement, induced corneal aberrations, and modulation transfer function (MTF) values were assessed. Linear regression analyzed the relationship between decentration and visual quality parameters, including corneal aberrations and MTF values. RESULTS: No significant difference was observed in objective visual quality, efficacy, and safety indexes between the two groups (all P > 0.05). The average decentered displacement for the first and second surgical eyes was 0.278 ± 0.17 mm and 0.315 ± 0.15 mm, respectively (P = 0.002). The horizontal coma in the first surgical eyes were notably lower than in the second (P = 0.000). MTF values at spatial frequencies of 5, 10, 15, and 20 cycles/degree (c/d) were higher in the first surgical eyes compared to the second (all P < 0.05). Linear regression indicated that high-order aberrations (HOAs), root mean square (RMS) coma, spherical aberration, horizontal coma, vertical coma, and eccentric displacement were all linearly correlated. Furthermore, MTF values exhibited a linear relationship with eccentric displacement across these spatial frequencies. CONCLUSIONS: There was no discernible difference in visual acuity, efficacy, or safety between the two operated eyes. Nonetheless, the first operated eyes exhibited reduced decentered displacement and demonstrated superior outcomes in terms of horizontal coma and MTF values compared to the second operated eyes following SMILE. The variations in visual quality parameters were linearly correlated with decentered displacement.


Assuntos
Astigmatismo , Aberrações de Frente de Onda da Córnea , Miopia , Humanos , Refração Ocular , Coma , Topografia da Córnea , Lasers de Excimer/uso terapêutico , Miopia/cirurgia , Astigmatismo/cirurgia , Substância Própria/cirurgia
4.
Comput Biol Med ; 174: 108453, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636327

RESUMO

PURPOSE: Biopsies play a crucial role in determining the classification and staging of tumors. Ultrasound is frequently used in this procedure to provide real-time anatomical information. Using augmented reality (AR), surgeons can visualize ultrasound data and spatial navigation information seamlessly integrated with real tissues. This innovation facilitates faster and more precise biopsy operations. METHODS: We have developed an augmented reality biopsy navigation system characterized by low display latency and high accuracy. Ultrasound data is initially read by an image capture card and streamed to Unity via net communication. In Unity, navigation information is rendered and transmitted to the HoloLens 2 device using holographic remoting. Concurrently, a retro-reflective tool tracking method is implemented on the HoloLens 2, enabling the simultaneous tracking of the ultrasound probe and biopsy needle. Distinct navigation information is provided during in-plane and out-of-plane punctuation. To evaluate the effectiveness of our system, we conducted a study involving ten participants, assessing puncture accuracy and biopsy time in comparison to traditional methods. RESULTS: Ultrasound image was streamed from the ultrasound device to augmented reality headset with 122.49±11.61ms latency, while only 16.22±11.25ms was taken after data acquisition from image capture card. Navigation accuracy reached 1.23±0.68mm in the image plane and 0.95±0.70mm outside the image plane, within a depth range of 200 millimeters. Remarkably, the utilization of our system led to 98% and 95% success rate in out-of-plane and in-plane biopsy, among ten participants with little ultrasound experience. CONCLUSION: To sum up, this paper introduces an AR-based ultrasound biopsy navigation system characterized by high navigation accuracy and minimal latency. The system provides distinct visualization contents during in-plane and out-of-plane operations according to their different characteristics. Use case study in this paper proved that our system can help young surgeons perform biopsy faster and more accurately.

5.
World J Psychiatry ; 14(3): 456-466, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617984

RESUMO

BACKGROUND: Adolescent major depressive disorder (MDD) is a significant mental health concern that often leads to recurrent depression in adulthood. Resting-state functional magnetic resonance imaging (rs-fMRI) offers unique insights into the neural mechanisms underlying this condition. However, despite previous research, the specific vulnerable brain regions affected in adolescent MDD patients have not been fully elucidated. AIM: To identify consistent vulnerable brain regions in adolescent MDD patients using rs-fMRI and activation likelihood estimation (ALE) meta-analysis. METHODS: We performed a comprehensive literature search through July 12, 2023, for studies investigating brain functional changes in adolescent MDD patients. We utilized regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) analyses. We compared the regions of aberrant spontaneous neural activity in adolescents with MDD vs healthy controls (HCs) using ALE. RESULTS: Ten studies (369 adolescent MDD patients and 313 HCs) were included. Combining the ReHo and ALFF/fALFF data, the results revealed that the activity in the right cuneus and left precuneus was lower in the adolescent MDD patients than in the HCs (voxel size: 648 mm3, P < 0.05), and no brain region exhibited increased activity. Based on the ALFF data, we found decreased activity in the right cuneus and left precuneus in adolescent MDD patients (voxel size: 736 mm3, P < 0.05), with no regions exhibiting increased activity. CONCLUSION: Through ALE meta-analysis, we consistently identified the right cuneus and left precuneus as vulnerable brain regions in adolescent MDD patients, increasing our understanding of the neuropathology of affected adolescents.

6.
Phys Med Biol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648787

RESUMO

Laser interstitial thermal therapy (LITT) has been popular for treating brain tumours and epilepsy. The strict control of tissue thermal damage extent is crucial for LITT. Temperature prediction is useful for predicting thermal damage extent. Accurately predicting in vivo brain tissue temperature is challenging due to the temperature dependence and the individual variations in tissue properties. Considering these factors is essential for improving the temperature prediction accuracy. OBJECTIVE: To present a method for predicting patient-specific tissue temperature distribution within a target lesion area in the brain during LITT. APPROACH: A magnetic resonance temperature imaging (MRTI) data-driven estimation model was constructed and combined with a modified Pennes bioheat transfer equation (PBHE) to predict patient-specific temperature distribution. In the PBHE for temperature prediction, the individual specificity and temperature dependence of thermal tissue properties and blood perfusion, as well as the individual specificity of optical tissue properties were considered. Only MRTI data during one laser irradiation were required in the method. This enables the prediction of patient-specific temperature distribution and the resulting thermal damage region for subsequent ablations. MAIN RESULTS: Patient-specific temperature prediction was evaluated based on patients' data acquired during LITT in the brain, using intraoperative MRTI data as the reference standard. Our method significantly improved the prediction performance of temperature distribution and thermal damage region. The average root mean square error was decreased by 69.54%, the average intraclass correlation coefficients was increased by 37.5%, the average Dice similarity coefficient was increased by 43.14% for thermal damage region prediction. SIGNIFICANCE: The proposed method can predict temperature distribution and thermal damage region at an individual patient level during LITT, providing a promising approach to assist in patient-specific treatment planning for LITT in the brain.

7.
Heliyon ; 10(7): e28441, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590909

RESUMO

Background: Fatty acid oxidation (FAO) is considered to play a vital part in tumor metabolic reprogramming. But the comprehensive description of FAO dysregulation in tumors has not been unknown. Methods: We obtained FAO genes, RNA-seq data and clinical information from the Msigdb, TCGA and GTEx databases. We assessed their prognosis value using univariate cox analysis, survival analysis and Kaplan-Meier curve. We determined the function of FAO genes using gene set variation analysis. The correlation analysis was calculated by corrplot R package. Immunotherapy response was assessed through TIDE scores. The protein expression levels of FAO genes were validated using immunohistochemistry (IHC). Results: The FAO scores were highest in COAD but lowest in PCPG. FAO scores were significantly associated with the prognosis of some cancers in OS, DSS, DFI and PFI. Besides, gene set variation analysis identified that FAO scores were related to immune-related pathways, and immune infiltration analysis showed FAO scores were positively related to cancer-associated fibroblasts and various immune-related genes. TIDE scores were significantly decreased in ACC, CHOL, ESCA, GBM, LAML, SARC, SKCM and THCA compared with normal samples, while it was significantly increased in BLCA, LUAD, LUSC, PCPG, PRAD and STAD. Besides, most FAO genes were downregulated in pan-cancer compared with normal samples. Moreover, we found copy number variation (CNV) of FAO genes played a positive role in their mRNA expression, while methylation was negative. We determined FAO genes were closely related to some drugs in pan-cancer. Conclusions: FAO score is a novel and promising factor for predicting outcomes.

8.
Heliyon ; 10(6): e27337, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38496838

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most fatal cancers with high morbidity and mortality, which severely affects people's lives. Long intergenic non-protein coding RNA 858 (LINC00858) was confirmed to promote the progression of colorectal cancer and lung cancer. However, the role of lncRNA LINC00858 is still unknown in ESCC. Herein, the main purpose of research was to explore LINC00858 function and its impact on ESCC cell biological behaviors. RT-qPCR was used to test the expression of LINC00858, miR-425-5p and ABL proto-oncogene 2 (ABL2) in ESCC cells. Functional experiments such as EdU assay, CCK-8 assay, transwell assay and Western blot assay were conducted to investigate the biological behaviors of ESCC cells. Luciferase reporter assay and RIP assay were implemented to determine the binding situation among RNAs. LINC00858 expression was abnormally high in ESCC cells and down-regulation of LINC00858 could restrain the proliferation, invasion, migration and EMT process of ESCC cells. Furthermore, miR-425-5p was proved to be sponged by LINC00858 and was down-regulated in ESCC cells. Besides, we discovered that miR-425-5p could target ABL2. Moreover, knockdown of ABL2 reversed the promoting function of miR-425-5p inhibitor on ESCC progression. LINC00858 aggravated ESCC progression via regulating the miR-425-5p/ABL2 axis.

9.
Regen Ther ; 27: 92-103, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38532843

RESUMO

Diabetic wounds can occur as a prevalent complication among people diagnosed with diabetes, frequently resulting in the necessity for amputation. The cause and effect of diabetic foot ulcer is complex, involving multiple factors. In the present study, wound healing strategies utilizing nanomaterials have proven to be effective in battling bacterial infections and improve wound regeneration. Poloxamers (PLX) exhibit extensive potential as a viable option for the development of nanomedicines owing to their inherent characteristics of self-assembly and encapsulation. This study aims to design and develop a PLX/ZnO nanocomposite incorporated with Centella Asiatica extract (CAE) for the multi-functional action in the diabetic wound healing treatment. Subsequently physico-chemical characterizations, such as XRD, FTIR, and TEM observations, demonstrated that the ZnO were evenly distributed through the PLX framework. The developed nanocomposite was biocompatible with mouse fibroblast cell line (L929), and it had multiple beneficial characteristics, such as a rapid self-healing process and effective antibacterial action against G+ and G- bacterial pathogens. After being treated with the developed formulation, skin fibroblast cell line and HUVECs demonstrated a substantial increase in their in vitro cell proliferation ability, migration, and tube-forming abilities. The utilization of a CAE@PLX/ZnO nanoformulation presents a viable strategy and a distinctive, encouraging composite for diabetic wound healing treatment.

10.
J Am Chem Soc ; 146(11): 7858-7867, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457662

RESUMO

Developing efficient bifunctional materials is highly desirable for overall proton membrane water splitting. However, the design of iridium materials with high overall acidic water splitting activity and durability, as well as an in-depth understanding of the catalytic mechanism, is challenging. Herein, we successfully developed subnanoporous Ir3Ni ultrathin nanocages with high crystallinity as bifunctional materials for acidic water splitting. The subnanoporous shell enables Ir3Ni NCs optimized exposure of active sites. Importantly, the nickel incorporation contributes to the favorable thermodynamics of the electrocatalysis of the OER after surface reconstruction and optimized hydrogen adsorption free energy in HER electrocatalysis, which induce enhanced intrinsic activity of the acidic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Together, the Ir3Ni nanocages achieve 3.72 A/mgIr(η=350 mV) and 4.47 A/mgIr(η=40 mV) OER and HER mass activity, which are 18.8 times and 3.3 times higher than that of commercial IrO2 and Pt, respectively. In addition, their highly crystalline identity ensures a robust nanostructure, enabling good catalytic durability during the oxygen evolution reaction after surface oxidation. This work provides a new revenue toward the structural design and insightful understanding of metal alloy catalytic mechanisms for the bifunctional acidic water splitting electrocatalysis.

11.
Zool Res ; 45(2): 329-340, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485503

RESUMO

The leopard coral grouper ( Plectropomus leopardus) is a species of significant economic importance. Although artificial cultivation of P. leopardus has thrived in recent decades, the advancement of selective breeding has been hindered by the lack of comprehensive population genomic data. In this study, we identified over 8.73 million single nucleotide polymorphisms (SNPs) through whole-genome resequencing of 326 individuals spanning six distinct groups. Furthermore, we categorized 226 individuals with high-coverage sequencing depth (≥14×) into eight clusters based on their genetic profiles and phylogenetic relationships. Notably, four of these clusters exhibited pronounced genetic differentiation compared with the other populations. To identify potentially advantageous loci for P. leopardus, we examined genomic regions exhibiting selective sweeps by analyzing the nucleotide diversity ( θπ) and fixation index ( F ST) in these four clusters. Using these high-coverage resequencing data, we successfully constructed the first haplotype reference panel specific to P. leopardus. This achievement holds promise for enabling high-quality, cost-effective imputation methods. Additionally, we combined low-coverage sequencing data with imputation techniques for a genome-wide association study, aiming to identify candidate SNP loci and genes associated with growth traits. A significant concentration of these genes was observed on chromosome 17, which is primarily involved in skeletal muscle and embryonic development and cell proliferation. Notably, our detailed investigation of growth-related SNPs across the eight clusters revealed that cluster 5 harbored the most promising candidate SNPs, showing potential for genetic selective breeding efforts. These findings provide a robust toolkit and valuable insights into the management of germplasm resources and genome-driven breeding initiatives targeting P. leopardus.


Assuntos
Antozoários , Bass , Humanos , Animais , Filogenia , Estudo de Associação Genômica Ampla/veterinária , Genoma
12.
World J Psychiatry ; 14(2): 315-329, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38464778

RESUMO

BACKGROUND: Sleep deprivation is a prevalent issue that impacts cognitive function. Although numerous neuroimaging studies have explored the neural correlates of sleep loss, inconsistencies persist in the reported results, necessitating an investigation into the consistent brain functional changes resulting from sleep loss. AIM: To establish the consistency of brain functional alterations associated with sleep deprivation through systematic searches of neuroimaging databases. Two meta-analytic methods, signed differential mapping (SDM) and activation likelihood estimation (ALE), were employed to analyze functional magnetic resonance imaging (fMRI) data. METHODS: A systematic search performed according to PRISMA guidelines was conducted across multiple databases through July 29, 2023. Studies that met specific inclu-sion criteria, focused on healthy subjects with acute sleep deprivation and reported whole-brain functional data in English were considered. A total of 21 studies were selected for SDM and ALE meta-analyses. RESULTS: Twenty-one studies, including 23 experiments and 498 subjects, were included. Compared to pre-sleep deprivation, post-sleep deprivation brain function was associated with increased gray matter in the right corpus callosum and decreased activity in the left medial frontal gyrus and left inferior parietal lobule. SDM revealed increased brain functional activity in the left striatum and right central posterior gyrus and decreased activity in the right cerebellar gyrus, left middle frontal gyrus, corpus callosum, and right cuneus. CONCLUSION: This meta-analysis consistently identified brain regions affected by sleep deprivation, notably the left medial frontal gyrus and corpus callosum, shedding light on the neuropathology of sleep deprivation and offering insights into its neurological impact.

13.
Parasit Vectors ; 17(1): 142, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500196

RESUMO

BACKGROUND: The protozoan parasite Toxoplasma gondii encodes dozens of phosphatases, among which a plant-like phosphatase absent from mammalian genomes named PPKL, which is involved in regulating brassinosteroid signaling in Arabidopsis, was identified in the genome. Among the Apicomplexa parasites, T. gondii is an important and representative pathogen in humans and animals. PPKL was previously identified to modulate the apical integrity and morphology of the ookinetes and parasite motility and transmission in another important parasite, Plasmodium falciparum. However, the exact function of PPKL in the asexual stages of T. gondii remains unknown. METHODS: The plant auxin-inducible degron (AID) system was applied to dissect the phenotypes of PPKL in T. gondii. We first analyzed the phenotypes of the AID parasites at an induction time of 24 h, by staining of different organelles using their corresponding markers. These analyses were further conducted for the parasites grown in auxin for 6 and 12 h using a quantitative approach and for the type II strain ME49 of AID parasites. To further understand the phenotypes, the potential protein interactions were analyzed using a proximity biotin labeling approach. The essential role of PPKL in parasite replication was revealed. RESULTS: PPKL is localized in the apical region and nucleus and partially distributed in the cytoplasm of the parasite. The phenotyping of PPKL showed its essentiality for parasite replication and morphology. Further dissections demonstrate that PPKL is required for the maturation of daughter parasites in the mother cells, resulting in multiple nuclei in a single parasite. The phenotype of the daughter parasites and parasite morphology were observed in another type of T. gondii strain ME49. The substantial defect in parasite replication and morphology could be rescued by genetic complementation, thus supporting its essential function for PPKL in the formation of parasites. The protein interaction analysis showed the potential interaction of PPKL with diverse proteins, thus explaining the importance of PPKL in the parasite. CONCLUSIONS: PPKL plays an important role in the formation of daughter parasites, revealing its subtle involvement in the proper maturation of the daughter parasites during division. Our detailed analysis also demonstrated that depletion of PPKL resulted in elongated tubulin fibers in the parasites. The important roles in the parasites are potentially attributed to the protein interaction mediated by kelch domains on the protein. Taken together, these findings contribute to our understanding of a key phosphatase involved in parasite replication, suggesting the potential of this phosphatase as a pharmaceutic target.


Assuntos
Parasitos , Toxoplasma , Humanos , Animais , Toxoplasma/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ácidos Indolacéticos/metabolismo , Mamíferos
14.
Elife ; 122024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502570

RESUMO

The apicoplast is a four-membrane plastid found in the apicomplexans, which harbors biosynthesis and organelle housekeeping activities in the matrix. However, the mechanism driving the flux of metabolites, in and out, remains unknown. Here, we used TurboID and genome engineering to identify apicoplast transporters in Toxoplasma gondii. Among the many novel transporters, we show that one pair of apicomplexan monocarboxylate transporters (AMTs) appears to have evolved from a putative host cell that engulfed a red alga. Protein depletion showed that AMT1 and AMT2 are critical for parasite growth. Metabolite analyses supported the notion that AMT1 and AMT2 are associated with biosynthesis of isoprenoids and fatty acids. However, stronger phenotypic defects were observed for AMT2, including in the inability to establish T. gondii parasite virulence in mice. This study clarifies, significantly, the mystery of apicoplast transporter composition and reveals the importance of the pair of AMTs in maintaining the apicoplast activity in apicomplexans.


Assuntos
Apicoplastos , Parasitos , Toxoplasma , Animais , Camundongos , Toxoplasma/metabolismo , Parasitos/metabolismo , Apicoplastos/metabolismo , Ácidos Graxos/metabolismo , Compostos Orgânicos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
15.
World J Urol ; 42(1): 114, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431764

RESUMO

BACKGROUND: The factors influencing fluid absorption in mini-percutaneous nephrolithotripsy (mini-PCNL) are still unknown. We aim to investigate the factors that influence irrigation fluid absorption during mini-PCNL. METHODS: A total of 94 patients who underwent mini-PCNL were included in this prospective study. The endoscopic surgical monitoring system (ESMS) was used to measure the volume of irrigation fluid absorbed during the procedure. Irrigating time, the total volume of irrigation fluid, stone size, S.T.O.N.E. score, hemoglobin, electrolyte levels, and postoperative complications were recorded. RESULTS: A significant correlation was observed between fluid absorption and the presence of postoperative fever, and based on this phenomenon, patients were divided into low and high fluid absorption groups. The serum creatinine level in the high fluid absorption group was significantly high (7 vs. 16.5, p = 0.02). Significant differences were observed between the low and high fluid absorption groups in terms of mean stone size (21.70 mm vs. 26.78 mm), presence of stone burden ≥ 800 mm2 (4% vs. 23%), S.T.O.N.E. score > 8 (4% vs. 38%), the fluid used > 18,596 ml (19% vs. 78%), irrigation time (55.61 min vs. 91.28 min), and perfusion rate (24% vs. 45%) (all p < 0.05). The rates of postoperative fever and SIRS in the high fluid absorption group were significantly high (p < 0.05). CONCLUSIONS: Mean stone size, presence of stone burden ≥ 800 mm2, S.T.O.N.E. score > 8, the fluid used > 18596 mL, irrigation time, and perfusion rate are risk factors of intraoperative fluid absorption in mini-PCNL.


Assuntos
Cálculos Renais , Litotripsia , Nefrostomia Percutânea , Humanos , Estudos Prospectivos , Nefrostomia Percutânea/métodos , Cálculos Renais/terapia , Fatores de Risco , Resultado do Tratamento
16.
Heliyon ; 10(5): e27205, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449594

RESUMO

Metabolic reprogramming is one of the prominent features that distinguishes tumor cells from normal cells. The role of metabolic abnormalities in regulating innate immunity is poorly understood. In this study, we found that IDI1 is significantly upregulated in liver cancer. IDI1 has no significant effect on the growth or invasion of liver cancer cells but significantly promotes liver cancer development in mice. Through molecular mechanism studies, we found that IDI1 interacts with the important regulator of innate immunity cGAS and recruits the E3 ligase TRIM41 to promote cGAS ubiquitination and degradation, inhibiting the cGAS-Sting signaling pathway. IDI1 inhibits the phosphorylation of TBK1 and the downstream factor IRF3 as well as the expression of CCL5 and CXCL10. In summary, this study revealed the important role of the metabolic enzyme IDI1 in the regulation of innate immunity, suggesting that it may be a potential target for liver cancer treatment.

17.
FASEB J ; 38(5): e23515, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38470367

RESUMO

Endometriosis is a benign gynecological disease that shares some common features of malignancy. Autophagy plays vital roles in endometriosis and influences endometrial cell metastasis, and hypoxia was identified as the initiator of this pathological process through hypoxia inducible factor 1 alpha (HIF-1α). A newly discovered circular RNA FOXO3 (circFOXO3) is critical in cell autophagy, migration, and invasion of various diseases and is reported to be related to hypoxia, although its role in endometriosis remains to be elucidated up to now. In this study, a lower circFOXO3 expression in ectopic endometrium was investigated. Furthermore, we verified that circFOXO3 could regulate autophagy by downregulating the level of p53 protein to mediate the migration and invasion of human endometrial stromal cells (T HESCs). Additionally, the effects of HIF-1α on circFOXO3 and autophagy were examined in T HESCs. Notably, overexpression of HIF-1α could induce autophagy and inhibit circFOXO3 expression, whereas overexpressing of circFOXO3 under hypoxia significantly inhibited hypoxia-induced autophagy. Mechanistically, the direct combination between HIF-1α and HIF-1α-binding site on adenosine deaminase 1 acting on RNA (ADAR1) promoter increased the level of ADAR1 protein, which bind directly with circFOXO3 pre-mRNA to block the cyclization of circFOXO3. All these results support that hypoxia-mediated ADAR1 elevation inhibited the expression of circFOXO3, and then autophagy was induced upon loss of circFOXO3 via inhibition of p53 degradation, participating in the development of endometriosis.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/genética , Proteína Supressora de Tumor p53 , RNA , RNA Circular/genética , Autofagia , Hipóxia
18.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396857

RESUMO

The differentiation and developmental trajectory of fish gonads, significantly important for fish breeding, culture, and production, has long been a focal point in the fields of fish genetics and developmental biology. However, the mechanism of gonadal differentiation in leopard coral grouper (Plectropomus leopardus) remains unclear. This study investigates the 17ß-Hydroxysteroid Dehydrogenase (Hsd17b) gene family in P. leopardus, with a focus on gene characterization, expression profiling, and functional analysis. The results reveal that the P. leopardus's Hsd17b gene family comprises 11 members, all belonging to the SDR superfamily. The amino acid similarity is only 12.96%, but conserved motifs, such as TGxxxGxG and S-Y-K, are present in these genes. Hsd17b12a and Hsd17b12b are unique homologs in fish, and chromosomal localization has confirmed that they are not derived from different transcripts of the same gene, but rather are two independent genes. The Hsd17b family genes, predominantly expressed in the liver, heart, gills, kidneys, and gonads, are involved in synthesizing or metabolizing sex steroid hormones and neurotransmitters, with their expression patterns during gonadal development categorized into three distinct categories. Notably, Hsd17b4 and Hsd17b12a were highly expressed in the testis and ovary, respectively, suggesting their involvement in the development of reproductive cells in these organs. Fluorescence in situ hybridization (FISH) further indicated specific expression sites for these genes, with Hsd17b4 primarily expressed in germ stem cells and Hsd17b12a in oocytes. This comprehensive study provides foundational insights into the role of the Hsd17b gene family in gonadal development and steroidogenesis in P. leopardus, contributing to the broader understanding of fish reproductive biology and aquaculture breeding.


Assuntos
17-Hidroxiesteroide Desidrogenases , Bass , Animais , Masculino , Feminino , Hibridização in Situ Fluorescente , Gônadas/metabolismo , Testículo/metabolismo
19.
BMC Genomics ; 25(1): 210, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408914

RESUMO

BACKGROUND: Due to its enormous biomass, Antarctic krill (Euphausia superba) plays a crucial role in the Antarctic Ocean ecosystem. In recent years, Antarctic krill has found extensive application in aquaculture, emerging as a sustainable source of aquafeed with ideal nutritional profiles. However, a comprehensive study focused on the detailed effects of dietary Antarctic krill on aquaculture animals, especially farmed marine fishes, is yet to be demonstrated. RESULTS: In this study, a comparative experiment was performed using juvenile P. leopardus, fed with diets supplemented with Antarctic krill (the krill group) or without Antarctic krill (the control group). Histological observation revealed that dietary Antarctic krill could reduce lipid accumulation in the liver while the intestine exhibited no obvious changes. Enzyme activity measurements demonstrated that dietary Antarctic krill had an inhibitory effect on oxidative stress in both the intestine and the liver. By comparative transcriptome analysis, a total of 1,597 and 1,161 differentially expressed genes (DEGs) were identified in the intestine and liver, respectively. Functional analysis of the DEGs showed multiple enriched terms significantly related to cholesterol metabolism, antioxidants, and immunity. Furthermore, the expression profiles of representative DEGs, such as dhcr7, apoa4, sc5d, and scarf1, were validated by qRT-PCR and fluorescence in situ hybridization. Finally, a comparative transcriptome analysis was performed to demonstrate the biased effects of dietary Antarctic krill and astaxanthin on the liver of P. leopardus. CONCLUSIONS: Our study demonstrated that dietary Antarctic krill could reduce lipid accumulation in the liver of P. leopardus, enhance antioxidant capacities in both the intestine and liver, and exhibit molecular-level improvements in lipid metabolism, immunity, and antioxidants. It will contribute to understanding the protective effects of Antarctic krill in P. leopardus and provide insights into aquaculture nutritional strategies.


Assuntos
Bass , Euphausiacea , Animais , Antioxidantes , Euphausiacea/genética , Ecossistema , Hibridização in Situ Fluorescente , Perfilação da Expressão Gênica , Dieta , Bass/genética , Lipídeos , Regiões Antárticas
20.
J Thorac Dis ; 16(1): 65-80, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38410598

RESUMO

Background: Asthma is characterized by airway hyperresponsiveness, reversible airway obstruction, and chronic airway inflammation. It is the most common chronic disease in childhood. However, the diagnosis of childhood asthma remains challenging, and there is an urgent need to develop new diagnostic methods. Methods: To identify biomarkers of asthma in children, we adopted the Orbitrap-based data-independent acquisition (DIA) mass spectrometry proteomics method to analyze the serum proteomic signatures of children with acute asthma and convalescent children. Results: We identified 747 proteins in 46 serum samples and 50 differentially expressed proteins (DEPs) that distinguished between asthmatic and healthy children. Next, functional enrichment analysis of the DEPs was conducted, it was indicated that the DEPs were significantly enriched in immune-related and function terms and pathways. Furthermore, we performed statistical analysis and identified MMP14, ABHD12B, PCYOX1, LTBP1, CFHR4, APOA1, IGHG4, ANG and IGFALS proteins as the diagnostic biomarker candidates. Ultimately, a promising asthma diagnostic model for preschool children based on IGFALS was built and evaluated. The area under the curve (AUC) of the IGFALS model was 0.959. Conclusions: In this study, the DIA proteome strategy was used and the largest number of proteins of asthmatic children serum proteomics was identified. The proteomics results showed that the DEPs play the central role of the inflammation-immune mechanism in asthma pathogenesis, suggesting that these proteins may be used in asthma diagnosis, prognosis, or therapy, and suggested biomarkers for asthma of preschool children. In conclusion, our results provide insight into the pathophysiology of asthma. We believe that the diagnostic model will facilitate clinical decision-making regarding asthma in preschool children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...